Contribution of individual retinal ganglion cell responses to velocity and acceleration encoding.
نویسندگان
چکیده
We investigate the capability of turtle retinal ganglion cell (RGC) ensembles to simultaneously encode multiple aspects of visual motion: speed, direction, and acceleration of moving patterns. Bayesian stimulus reconstruction reveals that the instantaneous firing rates of RGCs contain information about all of these stimulus properties. Stimulus velocity is mainly encoded by steady-state firing rates, whereas acceleration can be reconstructed from transient components in RGC activity induced by abrupt velocity changes. Therefore neurons in higher brain areas may in principle extract information about changing velocity from the instantaneous firing activity of RGCs, without the need to compare responses to present velocities to previous ones. However, reconstruction requires the estimation of a combined acceleration and velocity signal, indicating that RGC ensembles signal both properties simultaneously. In accordance with this conclusion, combined velocity/acceleration sensitivity enhances the similarity of artificial spike trains to experimental data by 50% compared with the case of pure velocity tuning. Decoding of motion direction in addition to speed and acceleration requires direction-sensitive cells, which generate higher firing rates for one of the motion directions and therefore show asymmetric velocity tuning. By dividing the entire ensemble of simultaneously recorded cells into one group of direction-sensitive cells and one group with symmetric tuning, we demonstrate that the population of direction-sensitive cells encodes a combination of motion speed, acceleration, and direction. However, estimation of velocity and acceleration is improved by including the larger group of RGC responses that are sensitive to speed but not to motion direction.
منابع مشابه
Retinal Ganglion Cell Complex in Alzheimer Disease: Comparing Ganglion Cell Complex and Central Macular Thickness in Alzheimer Disease and Healthy Subjects Using Spectral Domain-Optical Coherence Tomography
Introduction: Alzheimer disease (AD) is the most common form of dementia worldwide. The modalities to diagnose AD are generally expensive and limited. Both the central nervous system (CNS) and the retina are derived from the cranial neural crest; therefore, changes in retinal layers may reflect changes in the CNS tissue. Optical coherence tomography (OCT) machine can show delicate retinal layer...
متن کاملDistinct Contributions of Rod, Cone, and Melanopsin Photoreceptors to Encoding Irradiance
Photoreceptive, melanopsin-expressing retinal ganglion cells (mRGCs) encode ambient light (irradiance) for the circadian clock, the pupillomotor system, and other influential behavioral/physiological responses. mRGCs are activated both by their intrinsic phototransduction cascade and by the rods and cones. However, the individual contribution of each photoreceptor class to irradiance responses ...
متن کاملStem Cells in Glaucoma Management
Glaucoma is the leading cause of preventable blindness worldwide. Despite tremendous advances in medical and surgical management of glaucoma in the recent years, the prevalence of glaucoma related blindness is anticipated to increase in the future decades because of the aging population. Stem cells have the potential to change the glaucoma management in several ways. There are several areas of ...
متن کاملNeural Stem Cell-based Intraocular Administration of Pigment Epithelium-derived Factor Promotes Retinal Ganglion Cell Survival and Axon Regeneration after Optic Nerve Crush Injury in Rat: An Experimental Study
Background: Pigment epithelium-derived factor (PEDF) is regarded as a multifunctional protein possessing neurotrophic and neuroprotective properties. PEDF has a very short half-life, and it would require multiple injections to maintain a therapeutically relevant level without a delivery system. However, multiple injections are prone to cause local damage or infection. To overcome this, we chose...
متن کاملChloride channel protein 2 prevents glutamate-induced apoptosis in retinal ganglion cells
Objective(s): The purpose of this study was to investigate the role of chloride channel protein 2 (ClC-2) in glutamate-induced apoptosis in the retinal ganglion cell line (RGC-5). Materials and Methods: RGC-5 cells were treated with 1 mM glutamate for 24 hr. The expression of ClC-2, Bax, and Bcl-2 was detected by western blot analysis. Cell survival and apoptosis were measured by 3-(4,5-dimeth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 98 4 شماره
صفحات -
تاریخ انتشار 2007